A faster model selection criterion for OP-ELM and OP-KNN: Hannan-Quinn criterion

نویسندگان

  • Yoan Miché
  • Amaury Lendasse
چکیده

The Optimally Pruned Extreme Learning Machine (OPELM) and Optimally Pruned K-Nearest Neighbors (OP-KNN) algorithms use the a similar methodology based on random initialization (OP-ELM) or KNN initialization (OP-KNN) of a Feedforward Neural Network followed by ranking of the neurons; ranking is used to determine the best combination to retain. This is achieved by Leave-One-Out (LOO) crossvalidation. In this article is proposed to use the Hannan-Quinn (HQ) Criterion as a model selection criterion, instead of LOO. It proved to be efficient and as good as the LOO one for both OP-ELM and OP-KNN, while decreasing computations by factors of four to five for OP-ELM and up to 24 for OP-KNN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian model selection in ARFIMA models

Keywords: Bayesian model selection Reversible jump Markov chain Monte Carlo Autoregressive fractional integrated moving average models Long memory processes a b s t r a c t Various model selection criteria such as Akaike information criterion (AIC; Akaike, 1973), Bayesian information criterion (BIC; Akaike, 1979) and Hannan–Quinn criterion (HQC; Hannan, 1980) are used for model specification in...

متن کامل

A theoretical investigation of several model selection criteria for dimensionality reduction

Based on the problem of determining the hidden dimensionality (or the number of latent factors) of Factor Analysis (FA) model, this paper provides a theoretic comparison on several classical model selection criteria, including Akaike’s Information Criterion (AIC), Bozdogan’s Consistent Akaike’s Information Criterion (CAIC), Hannan–Quinn information criterion (HQC), Schwarz’s Bayesian Informatio...

متن کامل

Variance Estimates and Model Selection

The large majority of the criteria for model selection are functions of the ̂ 2, the usual variance estimate for a regression model. The validity of the usual variance estimate depends on some assumptions, most critically the validity of the model being estimated. This is often violated in model selection contexts, where model search takes place over invalid models. A cross validated estimate of...

متن کامل

Model selection for integrated autoregressive processes of infinite order

Choosing good predictive models is an important ingredient in a great deal of statistical research. When the true model is relatively simple and can be parameterized by a prescribed finite set of parameters whose values are unknown, it is natural to ask whether a model selection criterion can exclude all redundant parameters, thereby achieving prediction efficiency through the most parsimonious...

متن کامل

An Investigation of Several Typical Model Selection Criteria for Detecting the Number of Signals

Based on the problem of detecting the number of signals, this paper provides a systematic empirical investigation on model selection performances of several classical criteria and recently developed methods (including Akaike’s information criterion (AIC), Schwarz’s Bayesian information criterion, Bozdogan’s consistent AIC, Hannan-Quinn information criterion, Minka’s (MK) principal component ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009